

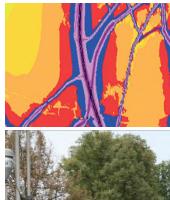
Themen

- GAA Hildesheim/ZUS LLGS/Dez. 43
- Akkreditierung und Qualitätssicherung
- Beurteilung von Messergebnissen
- Historisches
- Ergebnisse Staubniederschlag und Depositionen in Niedersachsen
- Immissionsmessprogramm Oker/Harlingerode

Organisation der ZUS LLG

Zentrale Unterstützungsstelle Luftreinhaltung, Lärm, Gefahrstoffe und Störfallvorsorge (ZUS LLGS)

Dezernat 41: Ausbreitungsmodelle/-berechnungen Luft und Lärm


Dezernat 42: Lufthygienisches Überwachungssystem Niedersachsen (LÜN)*

Dezernat 43: Gefahrstoffe, Sondermessprogramme*

Dezernat 44: Anlagenbezogener Immissionsschutz, Bekanntgabeverfahren und Störfallvorsorge

*DAAkS-Akkreditierung nach DIN EN ISO/IEC 17025 für die Bestimmung gasförmiger anorganischer und organisch-chemischer Verbindungen sowie partikelförmige und an Partikeln adsorbierte chemische Verbindungen

siehe auch: http://www.umwelt.niedersachsen.de/luft/LUEN/aufbau_luen/akkreditierung/akkreditierung-nach-din-en-isoiec-17025-9136.html

Akkreditierung und Qualitätssicherung

- Seit 2003 akkreditiert nach DIN EN ISO/IEC 17025 für die Ermittlung von gasförmigen anorganischen und organischen chemischen Verbindungen bei Immissionen sowie von partikelförmigen und an Partikeln adsorbierten chemischen Verbindungen bei Immissionen; Modul Immissionsschutz.
- Qualitätssicherung, u.a. regelmäßige Kalibrierung der Messsysteme, regelmäßige und erfolgreiche Teilnahme an Ringversuchen und Vergleichsmessungen, Einsatz von eigenem Fachpersonal für Probenahme und Analytik...

Veröffentlichung / Berichte

Auf der Internetseite des Niedersächsischen Ministeriums für Umwelt, Energie und Klimaschutz

Aktuelle Messergebnisse zur Luftqualität

>Themen > Luftqualität > Lufthygienische Überwachung Niedersachsen > Aktuelle Messwerte/Messwertearchiv Link: http://www.umwelt.niedersachsen.de/portal/live.php?navigation_id=2404&_psmand=10

oder

Videotext: auf Tafel 675 des NDR

Berichte

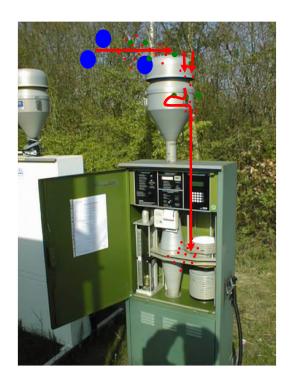
>Themen > Luftqualität > Lufthygienische Überwachung Niedersachsen > Berichte Link: http://www.umwelt.niedersachsen.de/luft/LUEN/berichte/

- Jahresberichte der Luftqualitätsüberwachung
- Sonderberichte

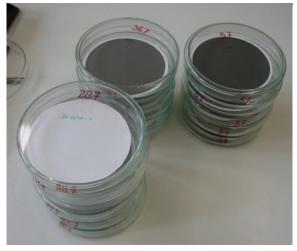
z.B.: Immissionsmessprogramm Niedersächsische Küste 2011 – 2012 Ermittlung der Immissionskonzentrationen und der Depositionen an PCDD/F und PCB (2008/2009)

Smartphone-App zur Luftqualität in Niedersachsen

http://www.umwelt.niedersachsen.de/startseite/themen/luftqualitaet/lufthygienische_ueberwachung_niedersachsen/luenapp/luen-app-113149.html


Staatliches Gewerbeaufsichtsamt Hildesheim -

Messverfahren



Gravimetrische PM₁₀-Messung

(nach DIN EN 12341)

- Staubabscheidung auf Rundfilter (z.B. Glasfaser, Quarzfaser)
- Differenzwägung äquilibrierter Filter (leer/belegt)
- Der Filter werden bei konstanter Temperatur und relativer Luftfeucht äquilibriert

Bestimmung von Staubniederschlag u. Inhaltsstoffe

Ermittlung von Staubniederschlag nach VDI 4320 Bl. 2,

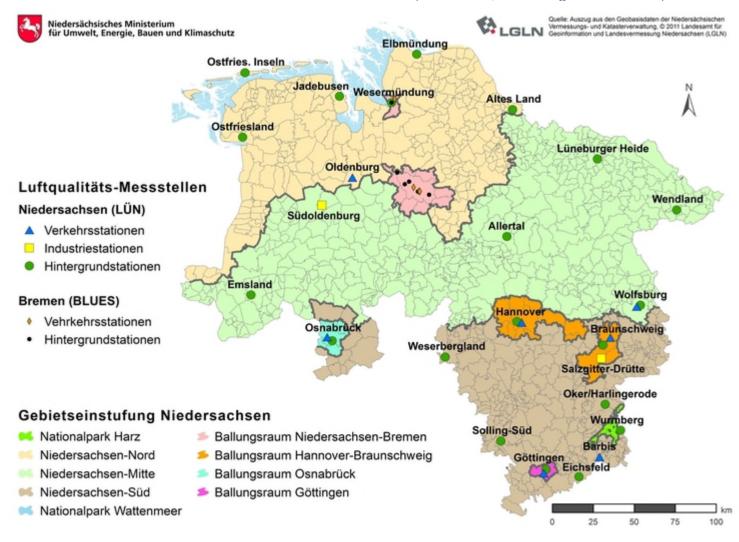
Bestimmung von Metallen nach DIN EN 15841 / VDI 2267 Bl. 15)

Beurteilung von Messergebnissen

- TA Luft Technische Anleitung zur Reinhaltung der Luft (2002)
 - Immissionswert für Staubniederschlag (Tabelle 2)
 - "Schutz vor erheblichen Belästigungen oder erheblichen Nachteilen durch Staubniederschlag…",
 - Immissionswerte für Schadstoffdepositionen (Tabelle 6) "Zum Schutz vor schädlichen Umwelteinwirkungen durch die Deposition luftverunreinigender Stoffe, einschließlich der Schutz vor schädlichen Bodenveränderungen…"
 - Depositionswerte als Anhaltspunkte für die Sonderfallprüfung (Tabelle 8, Acker und Grünland)
- Weitere Quellen: Anhang 2 der BBodSchV
 (Nr. 5 "Zusätzliche jährliche Frachten an Schadstoffen über alle Wirkungspfade")
- 39. BlmSchV für Messungen zur Beurteilung der Luftqualität (keine Grenz-/Zielwerte für "Ablagerungenraten")

Immissionswerte

Stoffgruppe/Stoff	Immissionswert	Mittelungszeitraum	Bezugszeitraum						
Immissionswert für Staubniederschlag (TA Luft, 2002)									
Staubniederschlag (nicht gefährdender Staub)	0,35 g/(m²d)	Jahr	Kalenderjahr						
Immissionswert für Schadstoffde	eposition (TA Luft, 2002)								
Arsen	4 μg/(m²d)	Jahr	Kalenderjahr						
Blei	100 μg/(m²d)	Jahr	Kalenderjahr						
Cadmium	2 μg/(m²d)	Jahr	Kalenderjahr						
Nickel	15 μg/(m²d)	Jahr	Kalenderjahr						
Thallium	2 μg/(m²d)	Jahr	Kalenderjahr						


Niedersachsen – Staubniederschlag

Staatliches Gewerbeaufsichtsamt Hildesheim =

Standorte Probenahmestellen (17 Punkte, siehe Ergebnistabellen)

Luftqualität in Niedersachsen - Ni, Cd, Pb, As im Staubniederschlag - 2016 -

	StN	Pb	As	Cd	Ni
Einheit	mg/(m²·d)	µg/(m²⋅d)	µg/(m²⋅d)	µg/(m²⋅d)	µg/(m²⋅d)
Immissionswert	350	100	4	2	15
Industrienahe Probe	nahmestellen				
Nordenham II *	56	135,4	0,70	2,09	1,32
Salzgitter-Drütte	45	3,5	0,37	0,22	2,02
Südoldenburg	43	2,1	0,25	0,05	0,66
Probenahmestellen	im städtischen, v	orstädtischen u	nd ländlichen F	Hintergrund	
Allertal	35	2,7	0,25	0,07	0,59
Braunschweig	68	2,5	0,30	0,14	1,15
Eichsfeld	32	1,5	0,18	0,04	0,67
Emsland	35	2,2	0,27	0,05	0,69
Göttingen	25	2,0	0,13	0,03	0,66
Hannover	48	2,3	0,28	0,07	0,92
Jadebusen	27	1,7	0,14	0,04	0,45
Oker/Harlingerode *	31	88,3	0,49	1,39	2,18
Osnabrück	40	2,3	0,20	0,10	0,84
Ostfriesland II	43	1,7	0,18	0,16	1,01
Solling-Süd	37	2,2	0,17	0,10	0,62
Weserbergland	36	1,9	0,21	0,10	0,75
Wolfsburg	35	2,0	0,31	0,09	0,82
Wurmberg	22	2,4	0,23	0,07	0,80

Luftqualität in Niedersachsen - Ni, Cd, Pb, As im Stadpaiederschlag - 2017 StN Pb As Cd Ni "" Cd, Pb, As im Stadpaiederschlag - 2017 -

	StN	Pb	As	Cd	Ni
Einheit	mg/(m²-d)	µg/(m²⋅d)	μg/(m²⋅d)	μg/(m²⋅d)	μg/(m²⋅d)
Immissionswert	350	100	4	2	15
Industrienahe Probe	enahmestellen				
Nordenham II ¹⁾	86	124,7	0,57	1,66	1,12
Salzgitter-Drütte	49	3,7	0,38	0,24	2,10
Südoldenburg	61	2,2	0,22	0,05	0,70
Probenahmestellen	im städtischen, v	orstädtischen u	ınd ländlichen F	Hintergrund	
Allertal	54	2,3	0,32	0,05	0,67
Braunschweig	72	2,4	0,25	0,13	0,94
Eichsfeld	27	1,6	0,16	0,04	0,64
Emsland	40	2,3	0,21	0,05	0,73
Göttingen	30	1,8	0,17	0,04	0,78
Hannover	56	2,7	0,25	0,07	0,93
Jadebusen	46	2,3	0,16	0,04	0,48
Oker/Harlingerode ¹⁾	37	45,5	0,33	0,73	1,65
Osnabrück	57	4,3	0,27	0,10	1,38
Ostfriesland II	55	1,8	0,22	0,04	1,02
Solling-Süd	36	2,1	0,19	0,07	0,68
Weserbergland	65	2,0	0,25	0,18	0,86
Wolfsburg	42	2,3	0,27	0,07	0,84
Wurmberg	35	2,4	0,27	0,06	0,79

Oker / Harlingerode – Staubniederschlag

Staatliches Gewerbeaufsichtsamt Hildesheim -

Historie / Anlass

"Reinhaltung der Luft" Heft 5 (7/1979) Luft, Boden, Obst und Gemüse Immissionsmeßprogramm »Oker/Harlingerode«

Broschüre des MS von ca. 1981 Luft, Boden, Obst, Gemüse, Getreide, Futterpflanzen, Rinder, Humanproben Großräumige Immissionsmeßprogramme werden seit 1968 in verschiedenen Landesteilen Niedersachsens durchgeführt. Rechtsgrundlage dieser Messungen ist das Niedersächsische Immissionsschutzgesetz vom 06. Januar 1966 (Niedersächsisches Gesetz- und Verordnungsblatt Seite 1).

Ziel dieser Untersuchungen ist es, den Stand und die Entwicklung der Schadstoffbelastung nach Art und Umfang fortlaufend festzustellen sowie die für ihre Entstehung und Ausbreitung bedeutsamen Umstände zu ermitteln. Hierdurch werden Grundlagen für ggf. notwendige Verbesserungs- und Vorsorgemaßnahmen zum "Schutz der Bevölkerung vor gesundheitsschädlichen Luftverunreinigungen gewonnen.

Die Untersuchungen wurden in Gebieten durchgeführt, die auf Grund ihrer Struktur, z.B. industrielle Ballungsräume oder Industrieansiedlungsgebiete, eine höhere Immissionsbelastung als in den übrigen Landesgebieten erwarten ließen oder aus denen in verstärktem Umfang Beschwerden aus der Bevölkerung über erhebliche Umweltbeeinträchtigungen durch Luftverunreinigungen erhoben wurden. Außerdem wurde erstmals auch im Er-

Räumliche Verteilung der mittleren Bleiniederschläge (1977-1979)

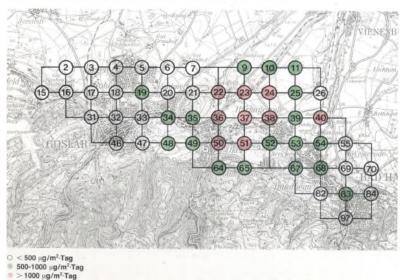
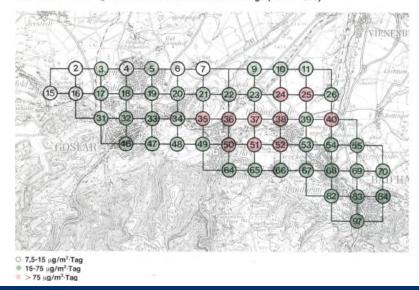
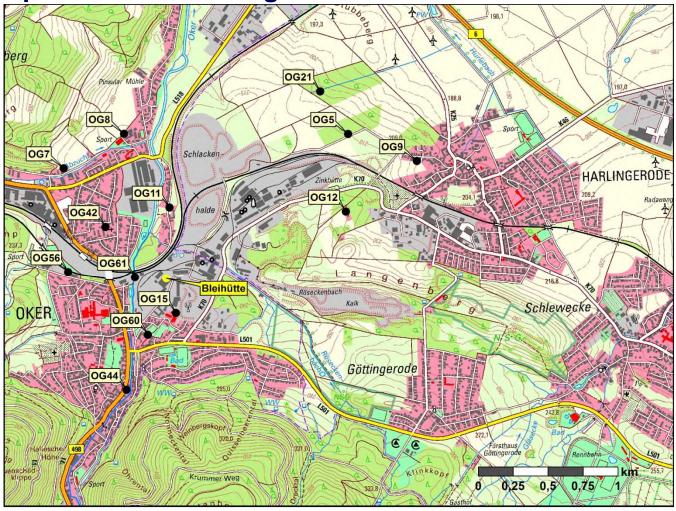



Abb. 6
Räumliche Verteilung der mittleren Cadmiumniederschläge (1977–1979)



Staatliches Gewerbeaufsichtsamt Hildesheim -

Messpunkte Oker-Harlingerode (13 seit 2005)

Beurteilungspunkte

Quelle: Auszug aus den Geobasisdaten der Niedersächsischen Vermessungs- und Katasterverwaltung, © 2011 Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN)

Ergebnisse 2016

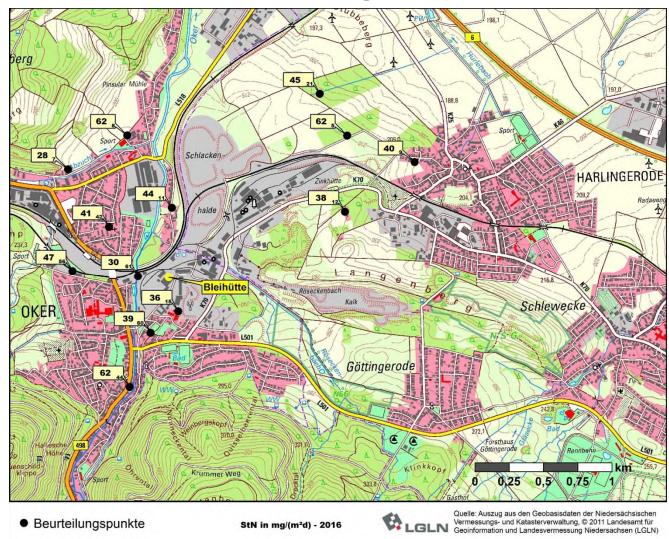
Beurteilungspunkt	StN*	Arsen	Blei	Cadmium	Nickel	Thallium
	g/(m²d)	μg/(m²d)	μ g/(m ² d)	μ g/(m ² d)	μg/(m²d)	μg/(m²d)
OG 5	0,062	1,16	345	6,7	29,0	0,05
OG 7	0,028	0,62	17	0,3	4,5	0,02
OG 8	0,062	1,53	33	0,4	4,1	0,05
OG 9	0,040	0,54	73	1,4	4,7	0,05
OG 11	0,044	0,51	74	1,4	3,2	0,05
OG 12	0,038	0,49	120	2,0	4,8	0,03
OG 15	0,036	0,63	99	1,6	2,5	0,08
OG 21	0,045	0,65	119	1,8	3,3	0,04
OG 42	0,041	0,35	31	0,5	2,9	0,02
OG 44	0,062	0,56	33	0,7	2,1	0,03
OG 56	0,047	0,51	52	0,7	2,3	0,02
OG 60	0,039	0,52	75	1,3	2,2	0,03
OG 61	0,030	0,44	88	1,6	2,5	0,04
Immissionswerte ¹⁾	0,35	4	100	2	15	2

^{*)} StN: Staubniederschlag

Staatliches Gewerbeaufsichtsamt Hildesheim

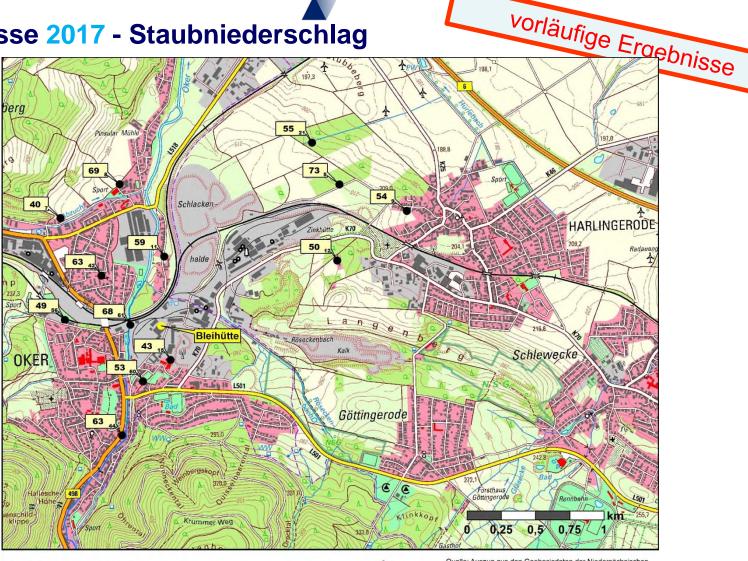
Ergebnisse 2017

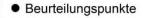
Vorläufige Ergebnisse


Beurteilungspunkt	StN*	Arsen	Blei	Cadmium	Nickel	Thailium
	g/(m ² d)	μg/(m²d)	μg/(m²d)	μ g/(m ² d)	μg/(m²d)	μg/(m²d)
OG 5	0,073	1,14	296	8,5	33,8	0,04
OG 7	0,040	0,45	16	0,2	4,2	0,02
OG 8	0,069	1,12	24	0,3	3,0	0,05
OG 9	0,054	0,55	74	1,8	5,7	0,03
OG 11	0,059	0,50	58	1,0	3,2	0,12
OG 12	0,050	0,56	169	2,4	5,1	0,03
OG 15	0,043	0,60	82	1,5	2,4	0,08
OG 21	0,055	0,54	113	1,7	3,4	0,03
OG 42	0,063	0,44	25	0,4	2,5	0,02
OG 44	0,063	0,41	21	0,3	1,8	0,02
OG 56	0,049	0,43	30	0,5	1,8	0,02
OG 60	0,053	0,44	49	0,9	1,7	0,04
OG 61	0,068	0,60	88	1,7	2,4	0,07
Immissionswerte ¹⁾	0,35	4	100	2	15	2

*) StN: Staubniederschlag

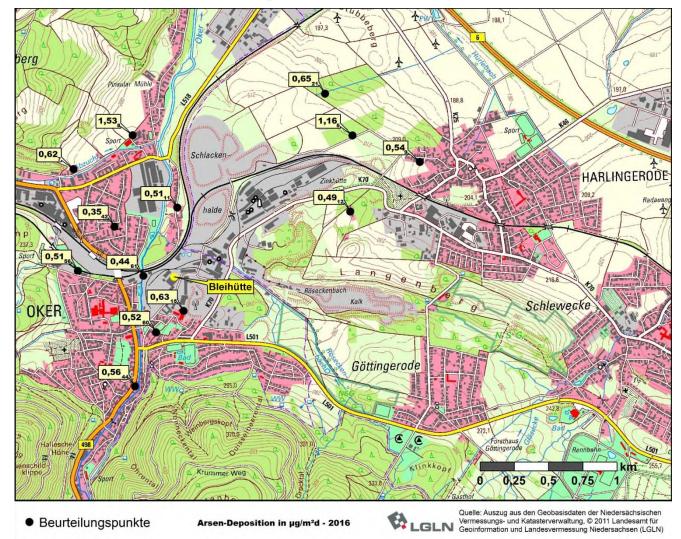
Ergebnisse 2016 - Staubniederschlag





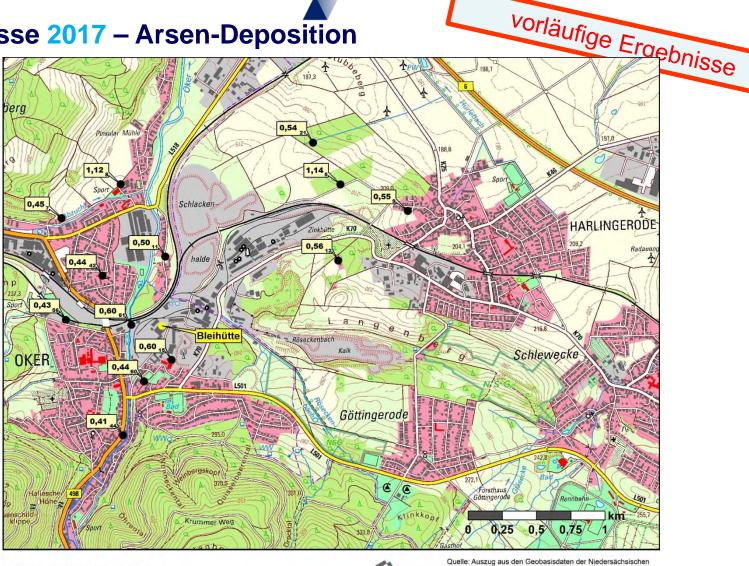
Staatliches Gewerbeaufsichtsamt Hildesheim •

Ergebnisse 2017 - Staubniederschlag



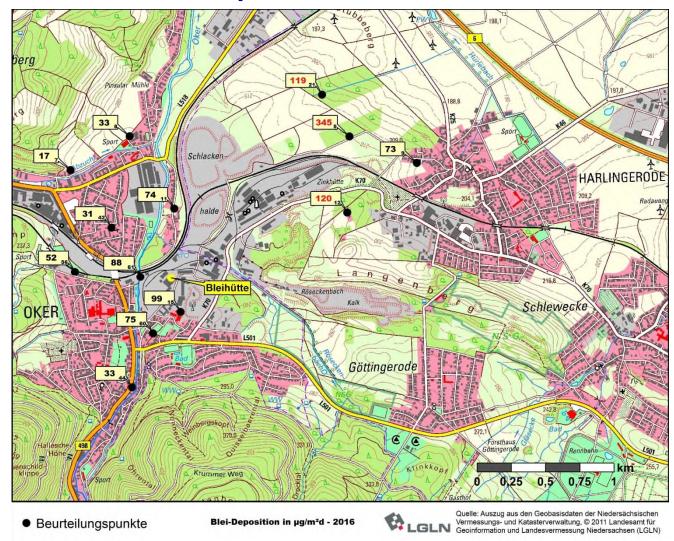
Quelle: Auszug aus den Geobasisdaten der Niedersächsischen

Ergebnisse 2016 – Arsen-Deposition



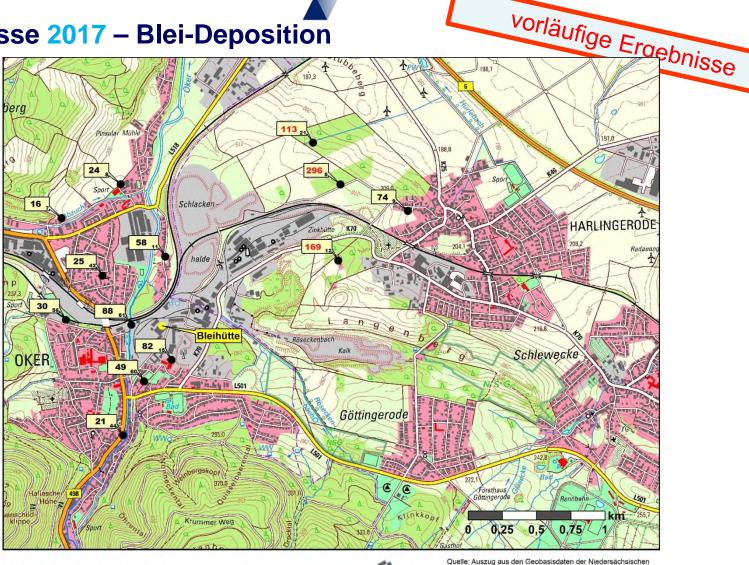
Staatliches Gewerbeaufsichtsamt Hildesheim •

Ergebnisse 2017 – Arsen-Deposition



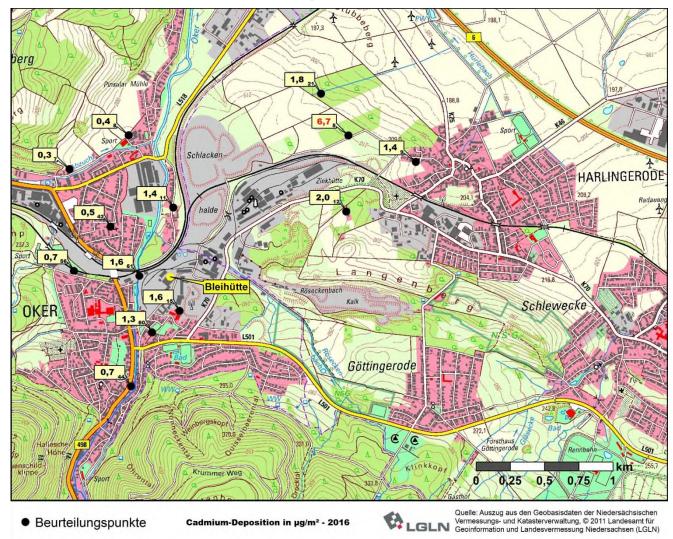
Beurteilungspunkte

Ergebnisse 2016 – Blei-Deposition



Staatliches Gewerbeaufsichtsamt Hildesheim •

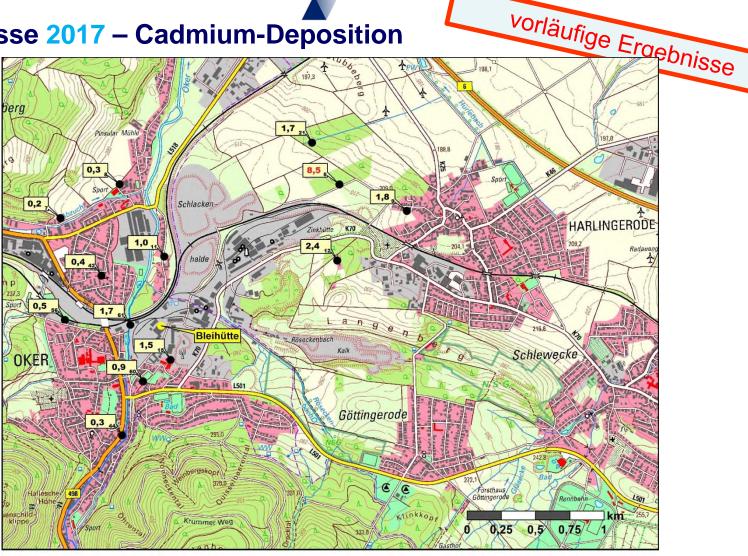
Ergebnisse 2017 – Blei-Deposition

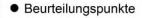


Beurteilungspunkte

Vermessungs- und Katasterverwaltung, © 2011 Lanuesann und Geoinformation und Landesvermessung Niedersachsen (LGLN)

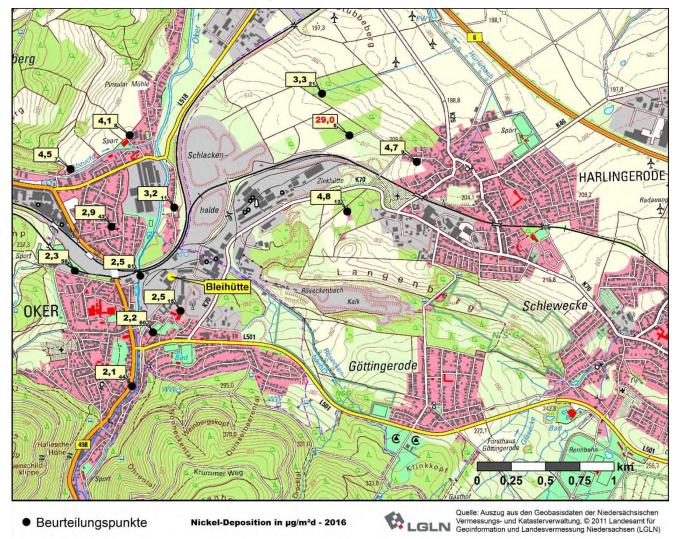
Ergebnisse 2016 – Cadmium-Deposition





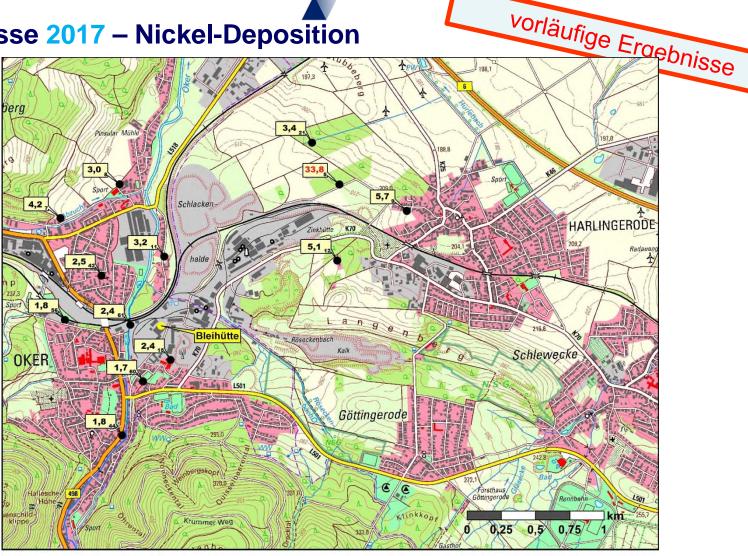
Staatliches Gewerbeaufsichtsamt Hildesheim •

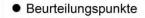
Ergebnisse 2017 – Cadmium-Deposition



Quelle: Auszug aus den Geobasisdaten der Niedersächsischen

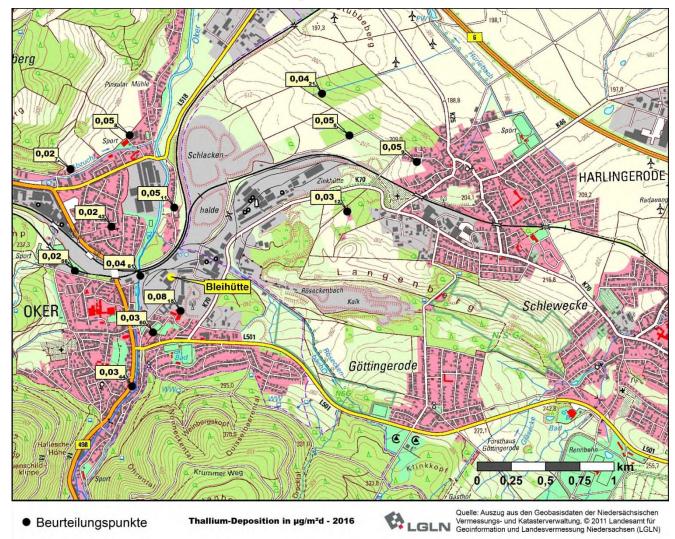
Ergebnisse 2016 – Nickel-Deposition





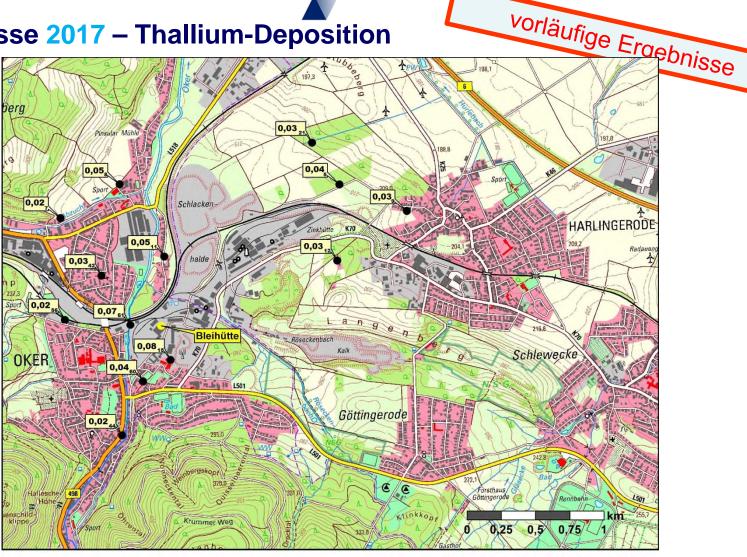
Staatliches Gewerbeaufsichtsamt Hildesheim •

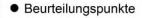
Ergebnisse 2017 – Nickel-Deposition



Quelle: Auszug aus den Geobasisdaten der Niedersächsischen

Ergebnisse 2016 – Thallium-Deposition





Staatliches Gewerbeaufsichtsamt Hildesheim

Ergebnisse 2017 – Thallium-Deposition

Quelle: Auszug aus den Geobasisdaten der Niedersächsischen

			Staubr	niederschla	ag in g/(m²o	d)	
Beurteilungs- punkt				Jahr(e	e)		
•	2016	2015	2014	2013	2012	2011	2011-2015 ¹⁾
OG5	0,062	0,072	0,091	0,058	0,066	0,066	0,071
OG7	0,028	0,032	0,056	0,031	0,046	0,073	0,047
OG8	0,062	0,080	0,090	0,084	0,094	0,075	0,085
OG9	0,040	0,058	0,091	0,061	0,060	0,102	0,074
OG11	0,044	0,070	0,064	0,048	0,059	0,063	0,061
OG12	0,038	0,038	0,055	0,038	0,043	0,055	0,046
OG15	0,036	0,038	0,044	0,053	0,046	0,074	0,051
OG21	0,045	0,057	0,072	0,048	0,170	0,085	0,086
OG42	0,041	0,048	0,056	0,061	0,049	0,095	0,062
OG44	0,062	0,072	0,081	0,080	0,059	0,098	0,078
OG56	0,047	0,051	0,057	0,037	0,036	0,068	0,050
OG60	0,039	0,053	0,069	0,053	0,051	0,085	0,062
OG61	0,030	0,044	0,039	0,040	0,034	0,034	0,038
Gebiets- mittelwert	0,044	0,055	0,066	0,053	0,062	0,075	0,062
Abweichung	-29,4 %	2)					

Mittelwert der Jahre 2011 – 2015

²⁾ Abweichung bezogen auf einen Mittelwert der letzten fünf Jahre (2011 – 2015)

			Arsen-	-Deposition	n in µg/(m²	d)	
Beurteilungs- punkt				Jahr(e)		
,	2016	2015	2014	2013	2012	2011	2011-2015 ¹⁾
OG5	1,16	1,55	1,25	1,01	1,04	1,36	1,24
OG7	0,62	0,61	2,28	1,04	1,44	3,50	1,77
OG8	1,53	1,46	1,29	1,54	1,24	2,67	1,64
OG9	0,54	0,95	0,72	0,72	0,60	0,77	0,75
OG11	0,51	1,75	0,79	0,87	0,81	1,35	1,11
OG12	0,49	0,53	0,60	0,60	0,57	0,83	0,63
OG15	0,63	0,90	0,74	2,81	7,34	1,73	2,70
OG21	0,65	1,00	0,73	0,82	2,06	1,95	1,31
OG42	0,35	0,41	0,48	0,64	0,54	0,87	0,59
OG44	0,56	0,46	0,54	0,64	0,46	0,65	0,55
OG56	0,51	0,40	0,74	0,53	0,75	0,62	0,61
OG60	0,52	0,47	0,59	0,72	0,81	0,75	0,67
OG61	0,44	1,21	1,13	0,83	0,60	0,59	0,87
Gebiets- mittelwert	0,65	0,90	0,91	0,98	1,40	1,36	1,11
Abweichung	-41,1 %	p ²⁾					

¹⁾ Mittelwert der Jahre 2011 – 2015

²⁾ Abweichung bezogen auf einen Mittelwert der letzten fünf Jahre (2011 – 2015)

		Blei-Deposition in µg/(m²d)					
Beurteilungs- punkt				Jahr(e	:)		
•	2016	2015	2014	2013	2012	2011	2011-2015 ¹⁾
OG5	345	496	428	313	428	448	423
OG7	17	16	27	20	22	36	24
OG8	33	35	33	37	34	71	42
OG9	73	113	128	97	116	136	118
OG11	74	142	121	117	103	160	128
OG12	120	170	143	118	127	190	150
OG15	99	118	101	183	182	189	155
OG21	119	188	180	154	123	184	166
OG42	31	35	41	45	36	56	43
OG44	33	29	34	35	28	46	34
OG56	52	39	68	67	53	90	63
OG60	75	59	73	81	62	103	76
OG61	88	138	150	248	125	171	166
Gebiets- mittelwert	89	121	117	116	111	145	122
Abweichung	-27,1	% ²⁾					

¹⁾ Mittelwert der Jahre 2011 – 2015

²⁾ Abweichung bezogen auf einen Mittelwert der letzten fünf Jahre (2011 – 2015)

		•	Cadmiur	n-Depositi	on in µg/(m	n²d)	
Beurteilungs- punkt				Jahr(e			
punkt	2016	2015	2014	2013	2012	2011	2011-2015 ¹⁾
OG5	6,70	8,97	8,52	6,05	7,49	7,93	7,79
OG7	0,30	0,23	0,42	0,29	0,37	0,68	0,40
OG8	0,37	0,42	0,50	0,40	0,41	0,53	0,45
OG9	1,41	1,97	2,47	1,96	2,17	2,14	2,14
OG11	1,41	2,15	1,98	1,70	1,79	2,62	2,05
OG12	2,04	2,43	2,25	1,77	2,26	2,50	2,24
OG15	1,63	1,93	1,95	13,74	17,31	2,98	7,58
OG21	1,82	2,57	2,43	2,25	3,07	2,31	2,53
OG42	0,47	0,61	0,60	0,55	0,53	0,75	0,61
OG44	0,68	0,57	0,58	0,78	0,41	0,56	0,58
OG56	0,66	0,59	0,91	0,90	0,77	0,86	0,81
OG60	1,26	1,12	1,14	1,64	1,05	1,05	1,20
OG61	1,61	1,97	2,14	3,64	2,17	1,61	2,31
Gebiets- mittelwert	1,56	1,96	1,99	2,74	3,06	2,04	2,36
Abweichung	-33,7 % ²	2)					

¹⁾ Mittelwert der Jahre 2011 – 2015

²⁾ Abweichung bezogen auf einen Mittelwert der letzten fünf Jahre (2011 – 2015)

		poomo		-Depositior	n in µg/(m²	d)	
Beurteilungs- punkt				Jahr(e	:)		
pariite	2016	2015	2014	2013	2012	2011	2011-2015 ¹⁾
OG5	29,03	39,26	33,42	28,66	43,20	34,01	35,71
OG7	4,46	5,34	4,82	4,29	8,47	13,16	7,22
OG8	4,07	3,25	3,07	3,67	3,90	5,26	3,83
OG9	4,73	5,90	8,64	7,40	8,97	8,85	7,95
OG11	3,24	3,97	5,29	5,92	6,30	8,05	5,90
OG12	4,76	4,35	5,48	4,94	6,89	6,04	5,54
OG15	2,50	2,26	2,81	4,07	3,20	4,34	3,33
OG21	3,31	3,95	4,29	3,67	5,56	5,49	4,59
OG42	2,92	2,10	2,96	3,87	3,64	4,85	3,48
OG44	2,14	2,05	2,44	2,41	2,23	3,35	2,50
OG56	2,27	1,44	2,72	2,34	2,61	3,37	2,50
OG60	2,21	1,71	2,77	2,56	2,13	3,10	2,45
OG61	2,51	2,13	3,37	4,41	3,39	4,47	3,55
Gebiets- mittelwert	5,24	5,98	6,31	6,02	7,73	8,03	6,81
Abweichung	-23,0 %	2)					-

¹⁾ Mittelwert der Jahre 2011 – 2015

²⁾ Abweichung bezogen auf einen Mittelwert der letzten fünf Jahre (2011 – 2015)

		•	Thallium	n-Depositio	on in µg/(m²	²d)	
Beurteilungs- punkt				Jahr(e	e)		
parine	2016	2015	2014	2013	2012	2011	2011-2015 ¹⁾
OG5	0,05	0,07	0,08	0,09	0,09	0,08	0,08
OG7	0,02	0,02	0,04	0,04	0,04	0,05	0,04
OG8	0,05	0,06	0,06	0,10	0,07	0,18	0,09
OG9	0,05	0,05	0,07	0,06	0,06	0,05	0,06
OG11	0,05	0,17	0,09	0,07	0,08	0,08	0,10
OG12	0,03	0,04	0,04	0,05	0,07	0,05	0,05
OG15	0,08	0,13	0,14	2,38	3,67	0,46	1,36
OG21	0,04	0,06	0,06	0,06	0,12	0,08	0,08
OG42	0,02	0,03	0,03	0,03	0,03	0,04	0,03
OG44	0,03	0,03	0,03	0,04	0,03	0,04	0,03
OG56	0,02	0,03	0,06	0,03	0,04	0,04	0,04
OG60	0,03	0,03	0,05	0,46	0,07	0,06	0,13
OG61	0,04	0,06	0,04	0,06	0,04	0,04	0,05
Gebiets- mittelwert	0,04	0,06	0,06	0,27	0,34	0,10	0,16
Abweichung	-35,5 % ²⁾						

¹⁾ Mittelwert der Jahre 2011 - 2015

²⁾ Abweichung bezogen auf einen Mittelwert der letzten fünf Jahre (2011 – 2015)

Fazit/Zusammenfassung

- Überschreitungen der Immissionswerte für Blei an 3 Messpunkten sowie für Cadmium und Nickel an 1 von insgesamt 13 Messpunkten (2016 u. 2017)
- Deposition von Thallium hat sich normalisiert am Messpunkt OG15 (Abriss der Hütten-Laugerei 2012)
- Entwicklung der Deposition im Gebietsmittel insgesamt eher rückläufig (2016 vs. 2011-2015)

